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Design of FIR Filter with Discrete Coefficients considering
Optimality
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Abstract:

In this paper,we propose a new design method of FIR filters with Signed Power of Two (SP2)
coefficients. In the method proposed here, the design problem of FIR filters is formulated as an
discrete semi-infinite linear programming problem (DSILP), and the DSILP is solved using a
branch and bound technique. We will guarantee the optimality of the solution obtained. Hence, it
is possible to obtain the optimal discrete coefficients. It is confirmed that the optimal coefficients
of linear phase FIR filter with the SP2 coefficients could be designed fast with enough precisions
by the computational experiments.
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digital filter, semi-infinite programming, linear programming, descrete programming,
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1 Introduction

In recent years tremendous advances have
been achieved in computer hardware as well as in
digital technology in general. Significant reduc-
tions in the cost, size, and power consumption of
digital hardware have led to increasingly wide-
spread application. Digital systems are finding
their way into our lives in computers and commu-
nications. For many diverse applications, informa-
tion is now most conveniently recorded, transmit-
ted, and stored in digital form. As a result, digital
signal processing (DSP) has become an excep-
tionally important modern tool.

Digital signal processing deals with the repre-
sentation of signals as ordered sequencers of
numbers and the processing of those sequences.
Typical reasons for signal processing include:
estimation of characteristic signal parameters,
elimination or reduction of unwanted interfer-
ence, and transformation of a signal into a form
that is in some sense more informative.

For a signal to be completely representable and
storable in a digital computer memory,it must be
sampled in time and discretized in value. That is,it
must be a practical digital signal with both finite
duration and a finite number of discrete values.
Very long sequences can be processed much at a
time. To discretize the value, a rounding or quan-
tization procedure must be used. However once
sampled and converted to a fixed bit-length bina-
ry form, the signal data are extremely convenient.
These data can be stored on hard disks or
diskettes, on magnetic tape, or in semiconductor
memory chips. All the advantages of digital pro-
cessing are now available. Unfortunately, these
signal data usually contain also noise data. To
eliminate the noise data, we use the so called
filter. There are at least two types of filters, that
has finite impulse response (FIR filter) and
infinite impulse response (IIR filter). Both filters
are studied very deeply. In thesis paper,we deal
with the FIR filter.

- PrEERIE

There are two methods for the realization of
FIR filter, one is a software re-alization method
and another is a hardware realization by using
digital circuits.

In hardware implementation of FIR filters, the
filter coefficients corresponding to multiplier
coefficients are presented as the finite word length
numbers. When the coefficients are simply round-
ed to the nearest discrete number, precision of
filters are degraded from the one with the optimal
real coefficients. There-fore, design methods of
FIR filters with discrete coefficients have been
widely researched [24], [33]. There are no design
methods of designing filters that could be easily
adapted to special design specifications. So each
filter has to be de-signed, in principle, by a com-
plete mathematical design procedure. It is the
aim of all design methods to approximate a desired
frequency response as close as possible by a finite
number of FIR filter coefficients. The starting point
of all these methods is the assumption of idealized
frequency responses or tolerance specifications
in the passband and stopband. Low variation of
the magnitude (ripple) in the passband, high
attenuation in the stopband and sharp cut-off are
competing design parameters in this context.
Some of error measures are generally used in FIR
filter design. One is the average of the squared
error in the frequency-response approximation.
The second is the maximum of the error over
specified regions of the frequency response and
so on.The method based on the first error meas-
ure is called a least squared (L.S) approximation,
the second a Chebyshev approximation or equi-
ripple approximation. And equi-ripple ap-proxima-
tion is much important since the characteristic of
the response function is much better than the one
obtained by the LS approximation.

Recently, many studies on a design method for
linear phase FIR filters with discrete coefficients
have been published [25], [29] in which,a numeri-
cal rep-resentation by a sum of signed power of
two (SP2) has been used in several methods. [1],
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[13], [28], [29]. It is a reason that a small number
of non-zero digits is often required for a represen-
tation of the coefficients in a VLSI imple- menta-
tion of the filters. There exist a lot of studies to
obtain an approximated solution for this design
problem. See, for example, Ito et. al [20], W. -S.
Lu [25].

They proposed to use a semidefinite program-
ming (SDP) relaxation method for the design
problem. However, if we do not have the optimal
solution for the de- sign problem, we cannot men-
tion the performance of the approximation
method precisely.

Since the design problem is formulated as a
discrete semi-infinite linear pro-gramming prob-
lem, the most practical methods to solve the prob-
lem is to use the branch and bound (B & B)
method.And,there are some methods using B &
B method for the design problem, for example,
based on LP, Remez algorithm, and so on. Cho et.
al [15] proposed an B & B method based on LP
focusing only on the active constraints to
decrease the computational time. However, they
did not assure the optimality of the solution
obtained by the algorithm.

In this paper, we propose a new design method
of linear phase FIR filters with SP2 coefficients
which guarantees the optimality of the solution
obtained. In the method proposed, the design
problem is formulated as a discrete semi-infinite
linear programming problem (DSILP) and solved
by B & B method. In the B & B method,a branch-
ing tree is generated and, on each node, it is nec-
essary to solve semi-infinite linear programming
problem (SILP) [8].

It is shown by the results of some computation-
al experiments for the filter designing problem,
the developed algorithm is rather practical.

2 Problem Formulation

In this section, we introduce the design method
of digital FIR filters with SP2 coe fficients.

2.1 Design problem of FIR digital filters
with continuous coefficients

In this paper, we deal with a design problem of

FIR digital filters with SP2 co-efficients that mini-

mize the maximal error, i.e., minimize the follow-

ing function:
— Jwy _ .
e = max |H(e™) — Hy(w)| "

where H;(w) is the desired frequency response
function and Q2 =1[0, w,] U [w, 7r]. Here, [0, w,]
denotes a passband and [wj, 7] denotes a stop-
band.

In the first, we consider the continuous
coefficient case. Then the design function of the
FIR filter is:

N—1
H(e) = Z hye=3k,
k=0 ©)
Now, we assume N is odd filter number. Given
a budget of total number of power-of-two terms
M, a certain number of SP2 terms, m;, , is allocat-
ed to the k-th target discrete-coefficient d;. Then
we denote the frequency response H (e j¢) as fol-
lows.

N-1
H(e™) = Z dreIk
k=0 ®)

The allocation of SP2 terms is determined, for
example, by Lu [32], Ito et. al [19], [21].

We assume that the absolute value of each SP2
coefficient {d,} is in the in-terval [2°, 2 7Y ] where
U is a natural number. Then, with a given term
allocation m;, the discrete coefficients dj, in the
equation(6) can be expressed as,

mg

do= 3o nedt
=1 @
Since each SP2 coefficient d}, is consisted of

non-zero digits, the relation of my , ... , m, and M

is represented as the following equation.

N-1
Z my = M.
k=0 ®)
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Figure 1: Four types of FIR filter

Here, we have bl-(k) e~ 1}and1 < qz-(k) <Uaqa
<i<m, 0<k<N-1).

The coefficients of an FIR filter are easily con-
strained to produce a linear phase response. The
corresponding constraint is simply that the finite-
duration impulse response have even symmetry or
odd symmetry about its midpoint. Linear phase FIR
filter has an important property that the group delay
is con-stant. The implication of constant group
delay is that all frequency components of an input
sequence are similarly delayed in the output
sequence. The shapes of impulse response of FIR
filter are classified into four types by filter length
N and even or odd symmetry characteristic. These
four cases are illustrated in Figure 1. In our pro-
posed method, we consider FIR filter of typel
because it makes possible to design all types of
filters (high-pass, low-pass and band-pass filters).

Since the impulse responses of all types are
symmetry, the frequency responses are expressed
as follows.

N-1
H(e)="" dpe™*
k=0

=dy + die™ + dye2v

©)

. .dN_le—(N_l)jw )
(N-1)/2
= e~ (N-1)/2j Z dy, cos kw
k=0 ®

Omitting the linear phase factor ¢ 1727

the frequency response of a sym-metrical impulse
response filter with N odd is given by

K
w) = Z dy. cos kw.
k=0 ®

Here K = (N—1)/2 and this equation is called
a magnitude response. Then the number of filter
coefficients we consider is K + 1. Suppose a
desired response H;(w) is given as follows

S, w € [0,wy),
O) w E [w$7 W]' (10)

Haw) = {

Where S is a scaling factor, wy, is the passband
cutoff frequency, and wj is the stopband cutoff fre-
quency, respectively. Then, the optimal problem to
approxi-mate H(w) to H;(w) in a min-max sense
can be written as

Jmin ma @) - K@)

where Q =10, w,] U [wg, ]. is the approxima-
tion band.

If we introduce a new variable 0 that corre-
sponds to the L..-approximation error, it is easy
to convert the above min-max problem to the fol-
lowing mini-mization problem, that is a semi-
infinite programming problem with SP2 coef-

ficients (DSILP).
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min )
subto Hw)+46 > Hyw), weQ,
—Hw)+6 > —Hylw), we
(12)

3 An algorithm for solving DSILP.

Our aim is to solve DSILP (12), but it is impos-
sible to solve (11) directly. Hence, we solve SILP
ignoring the constraints that each coefficient is an
SP2. Then DSILP reduces to a standard SILP and
we can use several standard methods to solve the
SILP, see for example [8]. Since SILP is a contin-
uous optimization problem, an obtained optimal
solution does not always satisfy the condition that
each coefficient is an SP2. Hence, we have to
combine SILP and a B & B method.

If there are some ﬁ,-’s that are not SP2, then select
one J; that is not a number with SP2 coefficients
variable x; and generate two subproblems, which
one has an additional constraint #; < |k;] and the
other has an additional constraints /; < |_7'LjJ. Here
Lizjj is the maximum SP2 coefficients that is less
than or equal to %; and Lk, ] is the minimum SP2
coefficients that is greater than or equal to ;.

To solve SILP problem,we exploited the 3-
phase method, and we introduce the algorithm
shortly in the following.

An algorithm for solving SILP

INPUT: N, wy, ws, S, M, my, ..., mg
OUTPUT: hy, ..., hg, 0,
Phase 1:

Generate the discretized linear programming
problem with discretizing parameter q.

Solve the discretized linear programming prob-
lem and obtain % 0 y, My, ... , MK

where y is an optimal dual variable vectors for the
discretized linear programming problem and ,
... , mg is the frequencies that correspond to the
active constraints in the descretized linear pro-

gramming problem.

Phase 2:
Delete the variables y(w;) that are zero and the
corresponding w; from the solution for each pair
(w;, wj) whose w; and wj are very close.
do
ya(w;) < ya(w;)+ ya(wsi), a=lor2,
yalwji) <0,
w;~ (w; + wj) /2.
end of for
Phase 3:
Solve the LISP using Newton method or quasi
Newton method with using
(%, 0,9, wy,-...,w;) as the initial solution.
Here, y and wy, ..., w; are the variables left by the
operation of phase 2.
Output the solution of the Newton/quasi Newton
method.
Now, we describe the B & B method for solving

DSILP in the following:
B & B procedure for DSILP:

INPUT: N, wy, wg, S, M, my, ..., mg

OUTPUT: hy, ..., hg, 0,

k<0,

z < high value.

Generate DSILP (12), and set SILP P(0) by relax-
ing the condition to be SP2 numbers.

P —{PO)}.
while P+ O do
SelectP € P.
P — P\P}.
Solve SILP P by 3 Phase method.
ifd < z
then
if the optimal solution (%, &) of P is a solu-
tion with SP2 coefficients
then
z< 0,
h* <~ h,
else
select 7 that 711- is not an SP2, and generate
P(% + 1) by adding a constraint
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hj > Wzﬂ to P,
generate P(k + 2) by adding a constraint
hi < Lh; 1 to P,
P—PUPE+1), P(k+2)},
k<~—k+2.
end if
end if
end while
Output hg, ..., h}, 2.

4 Numerical experiments

We executed some computational experiments
to certify the performance of the proposed filter
design method.

We consider a low pass filter with the odd
length and the symmetric charac- teristic with
S=1
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Figure 2: Comparison of approximation errors

Q = [0, wp) U [ws, 7],

B 1, 0fw <L w,p,
Hd(w)—{O, ws <w <, (13)

where w,, and wj are the pass and stop band cut-
off frequencies, respectively.

The approximation errors from the proposed
scheme are calculated for the following three sets
of parameters, (A), (B), (C). N=9 ... 41.
Discretizing parameter g to generate the dis-
cretized linear programming problem is 4(K + 1).

M Wy W U
(A) 2(K+1) 037 0357 16,
(B) 2(K+1) 047 0417 16,
(C) 2(K+1) 047 0437 16,

We set each m;, = 2. The CPU is mobile
Pentium III 650 MHz, and memory is 192 M
bytes. We use glpk (Ver.4.4)[7] to obtain continu-
ous solutions and to solve subproblems in Branch
and Bound.The CPU time contains the execution
time from the beginning to the end of obtaining
the solution by our method.

In Figure 2 and Figure 3, we show the objective
value of our method and of continuous solutions
for K = 4, 6, ..., 20. The expression "Continuous”
in Figure 3, Figure 2 means the optimal continu-
ous solution and "CSD” means the CSD solution
of our method.

In these figures, it was confirmed the objective
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Table 1: Computational time (second)

K A B C
4 9 ) 1
6 23 7 2
8 44 13 27

10 | 219 122 82
12 | 309 155 290
14 | 495 442 656

16 | 2804 | 1924 | 2892
18 | 7799 | 4190 | 9340
20 | 25456 | 3654 | 14164

values of our method are close to that of optimal
solutions. In general, it is known that the transfer-
band gets narrow, it is difficult to design FIR filter,
but in case of (1), the objective value by our method
is almost optimal in spite that transferband is nar-
row. In Figure 4, the magnitude responses (9) are
shown for w, = 0.47, w;=0.417 and Figure 5
shows the magnitude responses for w, = 0.3,
ws=0.357 and w, = 0.4 7, w; = 0.43 7.

In Figure 4, it is observed that almost equi-rip-
ple characteristic are obtained in both of two
cases K= 14, and K= 18. Especially, in case of
K=18, it is shown that the magnitude response
is almost equi-ripple.

In Figure 5, these magnitude responses show that
our method is efficient in not only stopband but also
passband. In case of K= 14, it is shown that the mag-
nitude response in passband is small and in case of
K =16, the magnitude response in stopband is almost
qui-ripple.

In these results, it is shown that our method to
design FIR filter is effect on obtaining of equi-rip-
ple magnitude responses.

In the Table 1, the comparison of the computa-
tional time is shown.

As much as a K becomes big, calculation time
grows large. However it is observed that the com-
putation time of K= 20 of (B) is about one hour,

5 Remarks

In this numerical experiments, we apply the
discretizing parameter q is 4(K + 1). According to

this experiments, though we changed q from 4 ...
10 on conditions K=4(A), K=5(B), K=6(0),
the objective value did not change. It is possible
to obtain better solution in discretizing much
finer in other conditions. However it is confirmed
that it is enough to discretize by 4(K+ 1) on the
passband and stopband on the condition of
numerical experiments to obtain optimal solu-

tions.

6 Conclusion

In this paper, we propose a new design method
of FIR filters with SP2 coeffi-cients. In this
method, it is possible to obtain the optimal dis-
crete coefficients.

It is confirmed that the optimal coefficients of
linear phase FIR filter with the SP2 coefficients
could be designed fast with enough precisions
through the com-putational experiments.
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