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Integer Programming Approach to Design of Digital Filter Using Second
Order Cone Problem Relaxation
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Abstract:

In this paper, we propose a new approach for designing digital filters by one of the optimization
methods, "second order cone problem relaxation (SOCP)" based on the semidefinite program-
ming (SDP) relaxation methods.

And we show the solution with our proposed design method is better than that with SDP relax-
ation method through several numerical experiments.
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1 Introduction

Recently, many studies on a design method for linear phase FIR filters with discrete coeffi-
cients have been published [7]— [9], in which, a numerical representation by a sum of signed
power of two (SP2) has been used in several methods.

It is a reason that a small number of non-zero digits is often required for a representation
of the coefficients in a VLSI implementation of the filters. However, it is difficult to design fil-
ters with SP2 coefficients since it results in an integer programming problem~(IP) well-known
as one of the NP-hard problems which can not be solved in polynomial time [11],

To overcome this difficulty W. -S. Lu [9] proposed an semidefinite programming (SDP)
relaxation method for the design problem and showed that the approach has a good perform-
ance through numerical experimentation. SDP relaxation is a recently developed technique for
approximating nonconvex programming problems such as integer programming problems in
the field of mathematical programming [3]. It is well known that SDP problem is a convex pro-
gramming problem and can be solved in polynomial time under some constraint qualification
[6]. Hence, in this paper we introduce some new LP relaxation algorithm based on SDP relax-
ation. This proposed algorithm allows the design problem to be solved in polynomial time. In
this method we formulate these design problems as LP relaxation problems with several sim-
ple constraints by modifying SDP relaxation. We strengthen the relaxation by adding more tri-
angle inequalities on that LP relaxation problem since simple LP relaxation is usually too weak.
Even adding several constraints, the optimization problem can be also solved in polynomial
time. We demonstrate the conclusion that the solutions of LP relaxation with triangle inequali-
ties is better than SDP relaxation through numerical experiments. Numerical experiments
show that these triangle inequality constraints are valuable enough to improve the solutions of
these design problems.

This paper consists of five sections. The following section is devoted to formulate the FIR
filter design problem concerned as {-1,1}-optimization problem and requisite preliminaries
including definitions and notations. In Section 3, a traditional design problem by using SDP
relaxation algorithm and our new LP relaxation algorithm with triangle inequalities are intro-
duced. Numerical experiments are made, in Section 4, in comparison with the results given
from the SDP relaxation, to illustrate that our algorithm improve the solutions of objective val-
ues. Section 5 is a conclusion.

2 Design of digital filters by using {-1,1}-optimization method

In this section, we introduce the design method of digital FIR filters with SP2 coefficients
using SDP problem by following Lu [9]. This design method is constructed by two steps: (1)
solve the design problem of digital filters with desired frequency characteristics by using con-
tinuous variables, (2) formulate the design problem of digital problems with SP2 coefficients
as a {-1,1}-optimization problem. To consider the structure of the {-1,1}-optimization problem
obtained, we will convert the {-1,1}-optimization problem to a minimum cut problem with nega-
tive coefficients which belongs to the class NP-hard.
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2.1 Design problem of FIR digital filters with continuous coefficients

In this paper, we deal with a design problem of FIR digital filters with SP2 coefficients that
minimize the weighted least square errors (WLS) , i.e., minimize the following function:

o /W W (w)|H(e’) — Ha(w)[*dw, 1)
0

where W(w) > 0is a weight function and Hy(w) is the desired frequency response function.
In the first, we consider the continuous coefficient case. Then the design function of the
FIR filter is:

H,(z) = 2—: hyz k. (2)

Now, we assume M is the total number of SP2 terms that can be used in H(e?*) and my
is the number of SP2 terms used in the k-th term of the frequency response H(e’). Then
we denote

H(Z) = dkz_'“, (3)

where
N-1
> my =M. (4)
k=0

The allocation of SP2 terms is determined, for example, by [8].
We assume that the absolute value of each SP2 term {dj} is in the interval [2°,27Y]
where U is a natural number. Then, by (3),

mp }
de =3 o2 5)
i=1

Here, we have b € {-1,1} and 1< ¢¥ <U, (1<i<my, 0<k<N-1).
For given {my, k = 0,..., N—1} and U, when an optimal continuous solution H,(z) =
,I:’:_Ol hixz~* is obtained, it is easy to find the maximum SP2 number dj; and the minimum
SP2 number d, that satisfy dy < hy < d, whose d; and dj, satisfy (5) for the given my.
Let dimi = (dj, + di)/2 be the middle point of the interval [d;, di] and & = (d}, — d)/2
be the half length of the interval. Then, d; and dj are expressed as dp; + Tx0x (T = —1)
and dmk + 2k (zx = 1), respectively. Hence, the transfer function H(z) with discrete
coefficient function becomes

N-1
H(ejw) — Zdl(:)e—jkw (6)
k=0

= Hn(e) + 2" [cs(w) — jss(w)] (7)
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by using
di = dmk + ZTk0k, (8)

and

Hp(e) = dp[c(w) — js(w)),

dy, = (dmOa A, -y dm,N—l)T,

c(w) = (1,co8w, ..., cos(N — 1)w)7T,

s(w) = (0,sinw, . ..,sin(N — 1)w)7, | (9)

cs(w) = (6o, ... ,0n-1c0s(N — Dw)T,

85(w) = (0,...,dn_1sin(N — 1w)T,

x = (z9,Z1,.-.,2n-1)7, z € {—1,1}.
By (7), we can easily verify that the objective function (1) becomes

e = 2T Qx + 22T q + const, (10)

where

Q= [ WWles@F @) + sslw)sf (@)do,
9

q= / W (@) Br (@) es(w) + Ei(w)s5(w)]dw,
E,(w) = dZ.c(w) — Ha (),
E,((.U) = dﬂs(w) - Hdi(W),
Hy(w) = Hyr(w) — jHyg(w).
Now, design problem of H(z) with SP2 coefficients for minimizing weighted least square
error becomes a {—1, 1}-quadratic integer programming problems [9]:

(1)

min 2T Qx + 2q7 « (12)
sub. to x € {—1,1}V.

2.2 Derivation to the minimum cut problem

To know the structures of optimization problems is always important. In the following,
we will point out that the problem (12) can be easily converted to a minimum cut problem
with negative coefficients. Minimum cut problems with negative coefficients belong to a
class of NP-hard. Hence, this shows (12) is a hard problem to be solved.
Let G = (V, E) be a perfect graph with a vertex set V' = {0,1,..., N} and an edge set
E ={ij | 0<i< j< N}, and, the weight w.(e € E) of the each edge be
'lUjN= —-Qj (j=0,...,N-— 1),
’w,;jI—Qij (0§Z<_7SN—~1)
Then the minimum cut problem of the graph G is:
min 4 Z weye + €T Qe + 27 e

ecE (14)
sub. to v :a 0-1 cut vector of G

(13)
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or equivalently

min Z ’UJ,,,](.'L'z — .’Ej)Q + CTQB -+ 2qT6

ijEE (15)

sub. to x € {-1,1}V*+,
where € = (1,...,1)T € RV. It is easy to see that problem (12) and (15) are equivalent
each other. Here, we denote, without loss of generality, zy = 1 in (15). Since, as we
pointed out that minimum cut problem with negative coefficients belongs to the class of
NP-hard, there will no hope to develop efficient algorithms to solve (12) directly.

3 SDP relaxation and LP relaxation

Following Lu [9], we reformulate (12) as

min Qe X +2¢"x
sub. to X —zz? =0, (16)
T < {—-1, 1}N,

where QQ ¢ X = ZQ,-]-X“. Then, since X; =z? =1 (i =0,...,N — 1), we obtain an
1,3
relaxation problem of (12) by
min Qe X +2q"x
sub. to X"_—‘l(’LZO,,N—].), (].7)
X —zzT > O.

Here, A = O denotes that A is positive semidefinite. Between a cut vector y € {0,1}¥
of the graph G and (x, X)) that satisfies (16), the following equations hold:

{.’Isz—zyjN+1 (]ZO,,N-“].),

Xij=—2u; +1(0<i<j<N-1). (18)

We can use softwares to solve SDP in polynomial times, for example, SeDuMi [12].
It is easily verified that the next triangle inequalities hold [10]:

T; +.’L'j +Xij > —1,
$,;——.'Ej—-—Xi’ -—1,

—T; — Tj + X5 ; -1, (19)
—r;+x; — X3 > —1.
Here, we denote 0 < i< j< N —-1. And, for0<i<j< k<N -1,
X,-j + X + Xjk > —1,
Xij — Xiw — Xje 2 -1, (20)

—Xij — Xk + Xj > —1,
—Xij + Xip — Xjr 2 —1
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hold. (19) is the triangle inequalities for the vertex set {7, j, N}, and (20) is the triangle
inequalities for the vertex set {i, j, k}. Therefore, the next optimization problem

min Qe X +2¢"x

sub. to Xuzl (iZO,...,N—l),
(19), (20),
X-—zxT >0

(21)

strengthen the problem (17).
Since it is easier to solve LP problems than SDP problem, we will relax the SDP
relaxation problem to LP relaxation problem. The following minimization problem

N-1
min 2 Z Qinij + 2qT:1: + Z Qii
i<j =0
sub. to (19),
~1<2;<1(6=0,...,N—1)

(22)

is a LP relaxation problem with a bounded optimal solution. Adding (20) as constraints,

N-1
min 2 Z Qi Xij +2q T + Z Qi
i<j i=1
sub. to (19), (20),
1<z, <1(i=0,...,N—1),

(23)

we have a strengthened problem for (22).

4 Second Order Cone Problem Relaxation

It is now popular to use semidefinite programming (SDP) ([3], [4]) for relaxation problems
whenever possible. Although SDP relaxation gives a good bound, the computational cost
of solving SDP is so expensive, in spite of efforts to develop better algorithms to solve
SDP, that it is still difficult to use SDP problems for solving large problems [10]. Second-
order cone programming (SOCP) is an optimization problem having linear constraints and
second-order cone constraints. SOCP is a special case of symmetric cone programnﬁng
[2], which also includes SDP and LP as special cases. Since primal-dual interior-point
algorithms were developed for both SOCP, several programs have been implemented to
solve SOCP [1]. Numerical experiments show that the computational cost of solving
SOCP is much less than that of SDP, and similar to LP.Kim and Kojima [5] first pointed
out that SOCP can be used to relax integer programming problem. We denote by S(n)
the set of n x n real symmetric matrices. Also, S(n)™ denotes the set of n X n positive
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semidefinite matrices. For X,Y € S(n),

XeoY I‘= ZXUY;J
Y

and X > Y if and only if X — Y € §(n)*. The second-order cone K(r) is defined by

K(r) :=

The vector e; € R is the zero except for the j-th component, which is 1.
The basic idea of a second-order cone relaxation problem is as follows.
Since the next relation

X—-zz' >0 & Ce(X —zz") >0 ("C = 0) (24)
holds then
X —zzT > O.

Then we can relax the next equation,

Ce(zz' — X)<0(C€0) (25)
for some C C S(n).

4.1 Kim-Kojima Method

Set e;el (1=0,...,K), Q asC.
We can rewrite the constraints of (17) using C.

Ce(zx? — X) = eel o(zx? — X)=eel exaxl —eel o X (26)
Ce(zz" - X) = Qoe(zzT —X)=Qezzl —Qe X (27)
= 27Qr - Qe X <0.
Therefore we can obtain the relaxation problem.
min Qe X +2¢"x
sub. to Xuz 1 (220,...,K), (28)

22— X;<0(i=0,...,K),
zTQr — Qe X <0.

Here let z = Q ¢ X and X; =1, then we can obtain the next problem

Minimize z+ 2q”x
subject to 22 <1 (:=0,...,K), (29)
z'Qx —2<0.
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In the second constraints,the the Q ¢ X = 2z holds, then SOCP for C, is equivalent to the

next equation.

min zTQz +2q"x
sub. to —1<2z;<1(:=0,...,K).

4.2 Muramatsu-Suzuki Method (1)
This method is a way for the SDP relaxation of 15 as follows.

min Z wij(z;i — ;) + T Qe+ 2¢"e

ijeE
sub. to Xu:l (ZZO,,K),
X -—zxT >0

and
eel i=0,...,K),
(e; + ej)(e,- + ej)T (0<i< j<K),
(ei —ej)(ei— )T (0<i<j<K)
are chosen as C [10]. We can rewrite the constraints of (17) using C.

Ce(zz? - X)

= e;el o (z2T — X)

= e,-e;fr O(E:BT - eief o X
=] — Xy <0,

Ce(zz? — X)

= (e; + €j)(e; + €;)T o (zzT — X)

=Zi%; + T;T; + T;T; + XX — (Xm -+ Xij ++X; + ij)
= (.’L‘z + .'Ej)z — (Xn -+ 2Xij + ij) <0,

Ce(zz? — X)

= (e; — &;)(e; — €))7 o (zz” - X))

= Ty — TiTj — % — % — (Xi — Xij — Xji — Xy5)
= (371, — .’L‘j)2 - (Xn — 2X1_7 — ij) S 0.

Here the object value is achieved using the next relation.

(a;i — 33j)2 — Xu — 2Xij + ij =2 - QX,']'
Minimize »  w;;(2 — 2X;;) + e"Qe +2q"e
ijeE
subject to X; =1 (1=0,...,K),
22— X <0(G=0,...,K),
(.’L‘i +.’17j)2 - (Xu +2XZJ +ij) <0 (0 <i<y3< K),
(.’L‘i —ZL‘j)z - (Xn - 2X1;j+ij) <0 (0 <i1<3< K)

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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When we remove X;; and put z;; = 2 — 2X;; (ij € E), the following problem is obtained.
Here 2 + 2X1] =4 - Zij.
Minimize Z Wi + efQe +2q%e
ijEE
subject to z2<1(i=1,...,n), (37)
(z; + ;)% + 2;; <4 (0<i< j < K),

However in this case, the optimal solution is automatically obtained as follows.
z;=00G=1,...,n),
4 (wij < O) . .
= ’ < < K).
2ij { 0 (ws; > 0), (0<i<j<K)

4.3 Muramatsu-Suzuki Method(2) [10]

Therefore we consider the next problem with fixing z¢ = 1.

K
Minimize zwoj(l —z;)? + Z wij(zi — x;)° + eT'Qe + 2q%e

=0 0<i<j<K (38)
subject to @« € {—1,1}%+L
Here we can use the definition of w, and the equation
(1-=z;)?=1-2z; 423 =2 - 2z;.
(38)can be written as follows.
K
Minimize — Z Qij(w; — z;)* + 2 Z gizi +eT Qe 39
0<i<j<K 3=0 (39)
subject to @« € {—1,1}¢*.
Then we can derivate the next equation from by adopting the method of MS(1).
' K
min — Z Q,’jzij + 2 quxj + eTQe
0<i<j<K =0
sub. to z?2<1(:=0,...,K), (40)

(a:,- -+ Z‘j)2 + 25 <4,

(z: — ;)° — 2;5 < 0,
(0<i<j<K)

(Proof) To replace (x; — z;)? into z;; the next relations are used.

T T € {——1, 1}, (-Tz — .'L'j)z = Zjj
— T;ZT; € {—1, 1}, (.’El — .’Iij)z < Zij (.'L'z — .’L‘j)2 > Zij
R mi,wj € {—-]., 1}, (.TZ - .'Ej)z S Zz'j, (.'17,,, + :L'j)2 S 4 — Z.,;j
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When {—1, 1} constraints are relaxed to continuous function, (40)can be obtained. |
However the next relation must hold.

( 2<1(i=0,...,K), \
xfgl(z:O,,K), xi+xj+(2—zij)/22—1,
(z; + x5) + 235 < 4, z, — x5 — (2 —2;)/2 > —1,
D
(:B,Z) (IUi—Z‘j)z — Zij S 0 = (:c,z) —T; —xj+(2—z,-j)/2 Z —1, $
(OSZ<jSK) —xi+xj—(2—zij)/22—1
\ 0<i<j<K) ]

(41)
The next feasible solution is a convex set involving (1, 1,0), (1, -1, 4), (-1, 1,4), (-1, -1, 0).

-1<z,2; <1,
(x5, %4, 2i5) | (i — x)? < 24,
(IL‘Z' + ZEJ')2 S 4 — Zij

On the other hand, the following equation

( -1 S Ty, T4 < 1,

i+ + (2 —25)/2 > -1,
(@5, Tj, 255) | T — x5 — (2 — 235) /2 > —1,
—%; — Tj + (2 — Z,,J)/2 > —1,
( —zi+ x5 — (2 - 25)/2 > -1

N

is a convex hull of (1,1,0), (1, -1,4),(-1,1,4), (-1, —1,0). Therefore (41)holds.
Then SOCP relaxation(40) is weaker than LP relaxation(22) as a relaxation, but it is
possible to obtain better solution with heuristic method.

5 Comparison of The Relaxation Problem

From the theoretical view point, SDP relaxation with triangle inequalities are stronger
than SDP relaxation, LP relaxation, or LP relaxation with triangle inequalities. However,
SDP relaxation with triangle inequalities is a rather heavy relaxation for programming
techniques and computation. Hence, we simply compare the SDP relaxation, LP relax-
ation and, LP relaxation with triangle inequalities through numerical experiments.

We show the theoretical relation of largeness of the optimal solution in the figure 6.

(A)SDP + triangleinequalities  (B)SDP

(C)Ssocp (D)LP + triangleinequalities
(E)LP + triangleinequalities (F)SOoCP

(G)SOCP + triangleinequalities
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bigger smaller

Original

(asn —— A(4.73) T B(4.62)

C(4.75)— D(4.74)—E(4.92)

F(4.92 }+Tri

Figure 1: The relation of the objective value

6 Comparison of the relaxation problems by computational experiments

We executed some computational experiments to certify and compare the performance of
the proposed filter design method with different algorithms.In the numerical experiments, the
specification of the filter design problem is basically same as Lu [9], hence, FIR filter is an odd
degree and even symmetric linear phase lowpass filter. The design specification is as follows:
the normalized passband is [0, » ] = [0,0.225], stopband is [ w,1] = [0.275,1], W(w) =1 on [0, w ],
W(w) =500 on [ w,0.5], L=12. And, we set each m =2. The CPU used is mobile Pentium III 650
MHz, memory is 192 M bytes. All problems are solved by SeDuMi~(Ver.1.03) [12].The CPU time
contains only the execution time of SeDuMi. How to obtain an {-1,1}-solution from the solution
of the relaxation problems is as follows:

(D) For the SDP relaxation problem, let the solution of the relaxation problem (% X )
(1-1) sign(%)

(1-2)letv, (i =0,"*-, N — 1) be the eigen vectors of)z; and set sign(»,) (i =0,---, N — 1).
(1-3) Use the Goemans-Williamson's randomized algorithm [4].

Select the best solution of the above solutions. (Lu [9] exploits (1-1) and (1-2) for the maxi-

mal eigen vectors, However, we recommend the above, since it does not take so much

CPU time, and may improve the solution.)

(2) For LP relaxation problems, we exploited the sign vector v, of the solution of the relaxation

problems %. In Figure 2, the comparison of the computational time is shown.
7 Examination

We compared LP relaxation methods and LP relaxation methods which have triangle inequali-

ties with SDP relaxation method by Lu [9] through numerical experiments.
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Table 1: Comparisons of upper bounds (x is the best solution).N=3,... 59

N WLS LP (22) LP + Tri (23) SDP (17) SOCP (5.1) | SOCP (40)
3 | 1.33298000 | 1.33300000* | 1.33300000* 1.33300000* | 0.13330000* | 0.13330000*
5 | 0.53726000 | 0.62513000 | 0.57498000* 0.57498000* | 0.62513000 | 0.57498000*
7 | 0.29413000 | 0.42797000* | 0.42797000* 0.42797000* | 0.81664000 | 0.67103000
9 | 0.22475000 | 0.37866000 | 0.24704000* 0.24704000* | 0.03786600 | 0.37866000
11 | 0.11542000 | 2.53401000 | 0.13730000* 0.13730000* | 0.01906700 | 0.16360000
13 | 0.10269000 | 0.10543000* | 0.10543000* 0.10543000* | 0.1068400 0.11025000
15 | 0.05214000 | 0.22109000 | 0.13274000* 0.13274000* | 0.2439700 0.23921000
17 | 0.04903000 | 0.69010000 | 0.15858000* 0.23590000 | 0.2447400 0.2692700
19 | 0.02473000 | 0.08771000* | 0.08771000* 0.0877100* | 0.9404000 0.10978000
21 | 0.02385000 | 0.06999000 | 0.06875000* 0.06933000 | 0.0693100 0.007409000
23 | 0.01197000 | 0.11259000 | 0.03368000* 0.03368000* | 0.0621900 0.05704000
25 | 0.01169000 | 0.02655000 | 0.02606000* 0.02606000* | 0.0978400 0.06608000
27 | 0.00585000 | 0.08714000 | 0.01104000* 0.01689000 | 0.06417000 | 0.01948000
29 | 0.00576000 | 0.02310000 | 0.02308000* 0.02360000 | 0.22940000 | 0.06722000
31 | 0.00288000 | 0.01258000* | 0.01258000* 0.0141500 0.18130000 | 0.01592000
33 | 0.00285000 | 0.04553000* | 0.04553000* 0.04553000* | 0.1778600 0.0506800
35 | 0.00142000 | 0.04666000 | 0.03882000* 0.03938000 | 0.16596000 | 0.0401300
37 | 0.00141000 | 0.06321000 | 0.06231000* 0.06263000 | 0.14685000 | 0.06774000
39 | 0.00071000 | 0.08347000 | 0.08196000* 0.08196000* | 0.12704000 | 0.08547000
41 | 0.00070000 | 0.11712000* | 0.11711000* 0.1172100 0.13182000 | 0.01191400
43 | 0.00035000 | 0.15770000 | 0.08531000* 0.08531000* | 0.12777000 | 0.1028400
45 | 0.00035000 | 0.09710000 | 0.08983000* 0.09100000 | 0.12320000 | 0.0119100
47 | 0.00018000 | 0.15553000 | 0.05823000* 0.05823000* | 0.13123000 | 0.07244000
49 | 0.00018000 { 0.05953000 | 0.05781000* 0.05781000* | 0.13152000 | 0.07174000
51 | 0.00009000 | 0.12833000 | 0.06984000* 0.07022000 | 0.08614000 | 0.09478000
53 | 0.00009000 | 0.07236000 | 0.06895000* 0.07080000 | 0.08600000 | 0.10152000
55 | 0.00004000 | 0.04949000 | 0.04946000* 0.04979000 | 0.13261000 | 0.05069000
57 | 0.00004000 | 0.05035000* | 0.05035000* 0.0503500* | 0.15121000 | 0.05320000
59 | 0.00002000 | 0.05359000 | 0.05345000* 0.05350000 | 0.10096600 | 0.05643000

By the numerical experiments, we found (1) all the solutions of LP with triangle inequalities
(23) are optimal solutions of the original problem (12), that is, all the solutions of (23) are {-1,
1}-integer solutions and automatically optimal solutions for (12) Numerical experiments show
that it is worthwhile to add triangle inequalities to LP relaxations.

As for the computational time, the filter design algorithm using SOCP relaxation (Kim and
Kojima) is fastest. Then comes the filter design algorithm using SDP relaxation. Even if we use
LP relaxation with triangle inequalities, the computational time is at most 8 minutes. For N less
than or equal to 35, each algorithm solves the problems within 10 seconds. At now, all triangle
inequalities are included in the relaxation problems, we can also develop an algorithm that has

triangle inequalities as cutting planes.
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Table 2: Comparisons of upper bounds (x is the best solution).N=61,...,101
N WLS LP (22) | LP + Tri (23) | SDP (17) | SOCP (5.1) | SOCP (40)
61 | 0.00002000 | 0.05425000 | 0.05409000* 0.05409000* | 0.1096400 0.05712000
63 | 0.00001136 | 0.06680117 | 0.06023354* 0.06922768 | 0.10918304 | 0.07255869
65 | 0.00001135 | 0.06076647 | 0.06037857* 0.07385944 | 0.10237367 | 0.07921838
67 | 0.00000576 | 0.06485766 | 0.06436583* 0.07316518 | 0.09888601 | 0.07799757
69 | 0.00000576 | 0.07369399 | 0.06372345* 0.07403431 | 0.09675582 | 0.07912869
71 | 0.00000293 | 0.07242553 | 0.06856167* 0.08889189 | 0.09644421 | 0.09354363
73 | 0.00000293 | 0.07988543 | 0.06845793* 0.08370451 | 0.09012794 | 0.08727217
75 | 0.00000149 | 0.08863230 | 0.07385780* 0.08370117 | 0.09013248 | 0.08727230
77 | 0.00000149 | 0.08985698 | 0.07316518* 0.07786689* | 0.08571961 | 0.08288307
79 | 0.00000076 | 0.08408650 | 0.07338401* 0.07756317 | 0.08562250 | 0.07902403
81 | 0.00000076 | 0.10605943 | 0.08998092 0.06683611* | 0.08275478 | 0.07000302
83 | 0.00000039 | 0.09294880 | 0.08370451* 0.06638491 | 0.08275476 | 0.07005689
85 | 0.00000039 | 0.09385693 | 0.08370117* 0.06613772* | 0.08907031 | 0.06936813
87 | 0.00000020 | 0.08346876 | 0.07759562* 0.06616929 | 0.08910672 | 0.06927017
89 | 0.00000020 | 0.08614930 | 0.07748277* 0.06341097 | 0.08257557 | 0.06643142
91 | 0.00000010 | 0.06958735 | 0.06537696* 0.06360760 | 0.08257557 | 0.06643142
93 | 0.00000010 | 0.07349370 | 0.06537680* 0.06638491 | 0.08275476 | 0.07005689
95 | 0.00000005 | 0.07015094 | 0.06596579* 0.06613772 | 0.08907031 | 0.06936813
97 | 0.00000005 | 0.06964551 | 0.06560719* 0.06616929 | 0.08910672 | 0.06927017
99 | 0.00000003 | 0.06824348 | 0.06333848* 0.06341097 | 0.08257557 | 0.06643142
101 | 0.00000003 | 0.06658692 | 0.06333839* 0.06360760 | 0.08257557 | 0.06643142

43

There is a result of two type of SOCP relaxation, SOCP(1) and SOCP(2). SOCP(1) is Kim-

Kojima's method and SOCP(2) is Muramatsu-Suzuki method. As for computational time of

SOCP, it took least seconds to obtain the solution in using SOCP(1). On the contrary to the the-
ory, computational time of SOCP(2) is bigger than LP and SDP in the range from 3 to 101(N).
However the number of variables increase, it is possible that the computational time of
SOCP(1) and SOCP(2) is smaller than other methods clearly.

8 Conclusion

In this thesis, we proposed LP based on the relaxation techniques to solve the design prob-

lem of FIR filters with SP2 coefficients under LMS criterion. And, we compared this relaxation

technique and the SDP relaxation through numerical experiments. By the numerical example,

LP based on the relaxation technique seems to work fairly good. To contrary to our predict,
computational time of SOCP(2) is bigger than SDP when variable N=101. We try o find the
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Figure 2: the comparison of the computatiomal time

cause and need to execute numerical experiments on bigger scale.
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